An inorganic carbon transport system responsible for acclimation specific to air levels of CO2 in Chlamydomonas reinhardtii.

نویسندگان

  • Yingjun Wang
  • Martin H Spalding
چکیده

Many photosynthetic microorganisms acclimate to CO(2) limited environments by induction and operation of CO(2)-concentrating mechanisms (CCMs). Despite their central role in CCM function, inorganic carbon (Ci) transport systems never have been identified in eukaryotic photosynthetic organisms. In the green alga Chlamydomonas reinhardtii, a mutant, pmp1, was described in 1983 with deficiencies in Ci transport, and a Pmp1 protein-associated Ci uptake system has been proposed to be responsible for Ci uptake in low CO(2) (air level)-acclimated cells. However, even though pmp1 represents the only clear genetic link to Ci transport in microalgae and is one of only a very few mutants directly affecting the CCM itself, the identity of Pmp1 has remained unknown. Physiological analyses indicate that C. reinhardtii possesses multiple Ci transport systems responsible for acclimation to different levels of limiting CO(2) and that the Pmp1-associated transport system is required specifically for low (air level) CO(2) acclimation. In the current study, we identified and characterized a pmp1 allelic mutant, air dier 1 (ad1) that, like pmp1, cannot grow in low CO(2) (350 ppm) but can grow either in high CO(2) (5% CO(2)) or in very low CO(2) (<200 ppm). Molecular analyses revealed that the Ad1/Pmp1 protein is encoded by LciB, a gene previously identified as a CO(2)-responsive gene. LciB and three related genes in C. reinhardtii compose a unique gene family that encode four closely related, apparently soluble plastid proteins with no clearly identifiable conserved motifs.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Uptake of HCO3 2 and CO2 in Cells and Chloroplasts from the Microalgae Chlamydomonas reinhardtii and Dunaliella tertiolecta

Mass-spectrometric disequilibrium analysis was applied to investigate CO2 uptake and HCO3 2 transport in cells and chloroplasts of the microalgae Dunaliella tertiolecta and Chlamydomonas reinhardtii, which were grown in air enriched with 5% (v/v) CO2 (high-Ci cells) or in ambient air (low-Ci cells). Highand low-Ci cells of both species had the capacity to transport CO2 and HCO3 , with maximum r...

متن کامل

Expression analysis of genes associated with the induction of the carbon-concentrating mechanism in Chlamydomonas reinhardtii.

Acclimation to varying CO2 concentrations and light intensities is associated with the monitoring of environmental changes by controlling genetic and physiological responses through CO2 and light signal transduction. While CO2 and light signals are indispensable for photosynthesis, and these environmental factors have been proposed as strongly associated with each other, studies linking these c...

متن کامل

Thylakoid Lumen Carbonic Anhydrase (CAH3) Mutation Suppresses Air-Dier Phenotype of LCIB Mutant in Chlamydomonas reinhardtii1[C][OA]

An active CO2-concentrating mechanism is induced when Chlamydomonas reinhardtii acclimates to limiting inorganic carbon (Ci), either low-CO2 (L-CO2; air level; approximately 0.04% CO2) or very low-CO2 (VL-CO2; approximately 0.01% CO2) conditions. A mutant, ad1, which is defective in the limiting-CO2-inducible, plastid-localized LCIB, can grow in high-CO2 or VL-CO2 conditions but dies in L-CO2, ...

متن کامل

Thylakoid lumen carbonic anhydrase (CAH3) mutation suppresses air-Dier phenotype of LCIB mutant in Chlamydomonas reinhardtii.

An active CO2-concentrating mechanism is induced when Chlamydomonas reinhardtii acclimates to limiting inorganic carbon (Ci), either low-CO2 (L-CO2; air level; approximately 0.04% CO2) or very low-CO2 (VL-CO2; approximately 0.01% CO2) conditions. A mutant, ad1, which is defective in the limiting-CO2-inducible, plastid-localized LCIB, can grow in high-CO2 or VL-CO2 conditions but dies in L-CO2, ...

متن کامل

Expression profiling-based identification of CO2-responsive genes regulated by CCM1 controlling a carbon-concentrating mechanism in Chlamydomonas reinhardtii.

Photosynthetic acclimation to CO2-limiting stress is associated with control of genetic and physiological responses through a signal transduction pathway, followed by integrated monitoring of the environmental changes. Although several CO2-responsive genes have been previously isolated, genome-wide analysis has not been applied to the isolation of CO2-responsive genes that may function as part ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 103 26  شماره 

صفحات  -

تاریخ انتشار 2006